Pregled projekta
Finansijski program : Ministarstvo nauke CG
Naziv [ENG] : Design of the pipelined signal adaptive architectures used in processing and esimation of highly nonstationary one-dimensional and multidimensional signals
Naziv : Projektovanje pipelineovanih signal adaptivnih arhitektura za obradu i estimaciju visoko nestacionarnih jednodimenzionalnih i višedimenzionalnih signala
Početak : 01.04.2012.
Kraj : 01.11.2015.
Skraceni naziv :
Web site :
Tip projekta : naučno-istraživacki
Tematska oblast : S3- ICT
Jedinica : Elektrotehnički fakultet
Budzet za jedinicu :
Ukupan budzet :
Rukovodilac : Ivanović Veselin
Naziv [ENG] : Design of the pipelined signal adaptive architectures used in processing and esimation of highly nonstationary one-dimensional and multidimensional signals
Naziv : Projektovanje pipelineovanih signal adaptivnih arhitektura za obradu i estimaciju visoko nestacionarnih jednodimenzionalnih i višedimenzionalnih signala
Početak : 01.04.2012.
Kraj : 01.11.2015.
Skraceni naziv :
Web site :
Tip projekta : naučno-istraživacki
Tematska oblast : S3- ICT
Jedinica : Elektrotehnički fakultet
Budzet za jedinicu :
Ukupan budzet :
Rukovodilac : Ivanović Veselin
Opis : U toku istraživanja na Projektu razvijaju se pipelineovane signal adaptivne arhitekture namijenjene analizi i filtriranju visoko nestacionarnih 1D, odnosno 2D signala, sa značajno poboljšanim vremenskim performansama u odnosu na postojeća rješenja.
Research realized at the Project covers design and impleme-ntation of the architectures used in analysis and filtering of highly nonstationary 1D and 2D signals and based on time- and stace/spatial-frequency analysis. After designing of the multicycle architectures used in analysis of the noted signals and designing of the corresponding signal adaptive architectures, the pipelined signal adaptive artchitectures that provide the significantly improved execution time performances are developed within the Project. The developed architectures are tested and verified on the real life highly nonstationary 1D and 2D signals and in a great number of points (up to 105 millions space/spatial-frequency points). Execution in such great number of points proves feasibility, reliability, and efficiency of the developed architectures.