
MULTIMEDIA SYSTEMS AND

SIGNALS

Faculty of Electrical Engineering

University of Montenegro, Podgorica

DIGITAL IMAGE
• Image: two-dimensional analog function f(x,y)

• Digital image – after digitalisation; represented by a two-dimensional set of

samples – pixels

• Depending on the number of bits used for pixels representation, we have

-Binary image - one pixel one bit,

-Computer graphics - four bits per pixel

-Grayscale image - eight bits per pixel

-Color image – each pixel is represented with 24 or 32 bits

Increasing the number of bits reduces the quantization error, i.e.,

increases the signal-to-noise ratio by 6 dB per bit

Memory requirements:

Grayscale image - 8xN1xN2 bits

Color image - 3x8xN1xN2 bits

Image analysis:

- spatial distribution of pixels – gives the

information about the positions of grayscaled

values

- distribution of pixels in different image regions - described by the joint

density distribution

DIGITAL IMAGE

• Beside the spatial distribution of pixels which provides the information about the

positions of grayscaled values , distribution of pixels in different image regions

can bring important information

• Such a distribution can be described by the joint density distribution

1

() (), 1,2,...,
N

i k k i
k

p x p x i M


 

xi - gray level of the i-th pixel

pk(xi) - probability density function (pdf) for a region k

k - weighting factor

• pdf for a region k can be described by the generalized Gaussian function:

1

2[()] 1 (3/)
() , 0,

2 (1/) (1/)

xk k i k
k i k

k

p x e


  
 

  

   
    

  

 - gamma function

k - mean

k - variance

DIGITAL IMAGE

2 - the Gaussian distribution is obtained

1  - the Laplace distribution is obtained

• We can use generalized form of pdf to describe the image histogram

• Histogram provides information about the occurrence of certain pixel values

0

200

400

600

800

N
u

m
b

e
r

o
f
p

ix
e

ls

Intensity
0 50 100 150 200 250

Histogram of a grayscale image “Lena”

Elementary algebraic operations

with images
Consider two images:

- a(i,j) – pixel on the (i,j) position of the first image

- b(i, j) - pixel on the (i,j) position of the second image

Addition or subtraction of two images is done by adding or

subtracting the corresponding pixels of an image

c(i,j)=a(i,j)b(i,j) - resulting pixel

Multiplying the image by a constant term k we get:

c(i,j)=ka(i,j)

• Quantisation (rounding to integer values) is performed in order

to represent the result of these and other operations as a new

image, we must perform quantization

• result is limited in the range of 0 to 255 (grayscale image is

assumed)

Elementary algebraic

operations with images

c(i,j)=a(i,j)+0.3b(i,j)

a(i,j)

b(i,j)

Resulting image obtained by adding 30% of "Baboon" to “Lena”

Elementary algebraic operations

with images

• Relationship used to obtain a negative of

a grayscale image:

• Clipping - cutting the pixels values over a

certain value cmax and below a certain

value cmin):
max max

max min

min min

(,)

(,) (,) (,)

(,)

c a i j c

b i j a i j c a i j c

c a i j c




  
 

(,) 255 (,)n i j a i j 

The result of clipping for

max min156, 100c c 

Basic geometric operations

• Translation of an image a(i,j) - moving the pixels in one or both

directions for a certain number of positions

Translated image by embedding 31 rows and 31

columns of black color (zero value)

• Coordinates of the imege can be written by the

vector

• Coordinates after rotation can be obtained as:

x
y
 
  

cos sin
sin cos

X x
Y y

 
 

    
        

”Lena”

rotated by 45°

• After image rotation, we to transform

points from the polar coordinate

system to the rectangular coordinate

system

• This transform is performed with

certain approximations

The characteristics of the human eye

• Different image processing algorithms can be defined that will meet some

important perceptual criteria

• Image is projected in the eye with light rays coming into the eye

• An important feature is the eye sensitivity to the change of light intensity

• The eye does not perceive linearly the changes in the light intensity, but

logarithmically

• In cases of very high or very low-light intensity, eye has ability to saturate

• There are two types of cells in the eye:

elongated (rod cells or rods) - 125 million

cone-like (cone cells or cones) - 5.5 million

• Rods respond to light and cones respond to colors

The characteristics of the human eye

• An eye is not equally sensitive to three primary colors: red, green and

blue

• Relative ratio of these sensitivities is: Red : Green : Blue = 30% : 59% : 11%

• The eye is able to identify approximately between 40 and 80 shades of

gray

• For color images it can recognize between 15 and 80 million of colors

• Cons detect light that enter the eye

• The image in the brain is actually obtained as the sum of images in

primary colors (Televisions, monitors, and other displays follow the

human three-color model)

• Image quality can be represented by three dimensions: fidelity, usefulness

and naturalness

-The usefulness is a major metric for medical imaging;

-The fidelity is the major metric for paintings

-The naturalness is the most important feature in virtual reality applications

Color models

• Color - one of the most important image characteristic

• Color is invariant to translation, rotation and scaling

• Various color systems are used to model the color image

1. RGB is one of the most commonly used color systemsThis system can

be represented by the color cube

The gray level is defined by the line R = G = B

• RGB model is based on the human perception of colors,

and thus has been used for displaying images (monitors, TV,

etc.)

- RGB model is sometimes called the additive model - the image is

obtained by adding the components in primary colors

- Each point in the image can be represented by the sum of values of the

three primary colors (R, G, B)

• RGB model uses fact that the image can be viewed as a

vector function of three coordinates for each position

within the image

Color models

• A size of an RGB digital image depends on how many bits we use for quantization

- n = 8 bits - values range from 0 to 255

• The value 0 (coordinate=0) means the absence of a color

• The value 255 (coordinate=1) denotes the color data with maximum intensity

(0,0,0) represents black

(1,1,1) represents white

• The luminescence for grayscale images is calculated as the mean pixel values of the

RGB components of color images

• Colors used in CMY color model are

obtained by combining two of the three

primary colors (R, G, B)

G+B=C (cyan);

R+B=M (magenta);

R+G=Y (yellow);

R+G+B=W (white)

Color models

• CMY color model is basically the most commonly used in printers, because the

white is obtained by the absence of all three colors

• Black could be obtained by combining all three colors together – however, the

printers usually have a separate cartridge for the black color

• CMYK color model - CMY model including the black color

• The connection between CMY and RGB (from the color cube):

C=1-R, M=1-G, Y=1-B

while the CMYK model can be obtained as:

• YUV color model:

- color is represented by three components: luminescent (Y) and two

chrominance (UV) components

- YUV to RGB is obtained from the following equations:

K=min(C,M,Y), C=C-K, M=M-K, Y=Y-K

)(713.0

)(564.0

114.0587.0299.0

YRV

YBU

BGRY







Some commonly present noise probability

distributions

• Image noise may occur during image transmission over communication channel

• The most common types of noise are;

- Impulse noise (manifested as a set of black and white pulses in the picture)

- Gaussian noise (occurs as a result of atmospheric discharges, or due to

electromagnetic fields generated by various appliances)

• Two-sided impulse noise model - impulse noise takes two fixed values a

(negative impulse) and b (positive impulse) with equal probabilities p/2:

 / 2

(,) / 2

() (1)

I

a with a probability p

f i j b with a probability p

f i with a probability p





 

"Lena" affected

by an impulse

noise with

density 0.05

Some commonly present noise probability distributions

"Lena" affected by

zero-mean white

Gaussian noise

whose variance is

equal to 0.02

• Thermal noise - modeled as white Gaussian noise

• Its distribution is given by:

2()

22
1

()
2

x

gP x e











 - mean

 - standard deviation of noise

• Uniformly distributed noise :

-The gray level values of the noise are evenly distributed

across a specific range.

-The quantization noise can be approximated by using

uniform distribution.The corresponding pdf is defined by:

1
,

()

0, .
u

for a x b
P x b a

otherwise


 

 



() / 2a b  

2 2() /12b a  

- mean

- standard

deviation of noise
2() /

2

2
() ,

()

0,

/ 4, (4) / 4

x

R

x e for x
P x

otherwise

  


     

 
 

 



   
Radar images may contain noise that is

characterized by the Rayleigh distribution

Filtering in the spatial domain

• Goal of filtering of noisy images - noise reduction and highlighting

image details

• The commonly used filters in the spatial domain are mean and

median filters

• The use of these filters depends on the nature of the noise that is

present within the image

• In case of aditive noise, spatial domain filters are suitable

Mean filtar

• Used to filter the images affected by Gaussian white noise,

• Calculates the average pixel intensity within an image part

captured by a specified window

• Wide window can cause blurring of image details, but results in

better noise reducton (the noise might converge to zero).

Filtering in the spatial domain

- consider a window of size (2N1+1)x(2N2+1)

• Mean filtar:

z(i,j)=f(i,j)+n(i,j)- signal affected by noise is given by:

1 2

1 21 2

1
(,) (,)

(2 1)(2 1)

i N j N

f
n i N m j N

z i j z n m
N N

 

   


 

  The output of the

arithmetic mean filter

-window size of 3x - 9 points

- window size 5x5 - 25 points

Second window will be more effective for noise reduction, but will introduce

more smoothed edges and blurred image

- output of this filter is mean value of pixels captured by the window

z(n,m) - pixel value within the window

h(i,j)=1/(2N1+1)(2N1+1) - impulse response of the filter

blurring after applying a mean filter on the

image edge (the mask size used is 5x5)

Filtering in the spatial domain

“Lena” affected by

Gaussian noise is

zero mean and

variance 0.02

Filtered image

obtained by using

3x3 moving filter

window

Filtered image

obtained by using

the 5x5 mean

moving filter

window

1 2 1 2

1 2

1

(2 1)(2 1)

(,) (,)

i N j N N N

f
n i N m j N

z i j z n m

   

   

 
 
 
 
 

The geometric mean filter can be used instead arithmetic mean filter

Output of the filter is:

• Geometric mean filter - less blurring

- preserves more image details

Filtering in the spatial domain

original image

image affected

by Gaussian

noise with - 0.05

mean and

variance 0.025

image filtered

by using

arithmetic

mean

image filtered

by using

geometric

mean

Filtering in the spatial domain

• Median filtar

- filter out the impulse noise

- If a sequence has an odd number of elements - sort the elements in an

array. The median value is the middle element of the sorted array

- If a sequence has an even even number of elements, the median is the

mean of the two central elements of sorted array

3 14 7 1 5Sequence 1:

1 3 5 7 14

median

Sequence 1I: 1 12 7 4 9 2

1 2 4 7 9 12

median 5.5

1. Median of image can be determined by rewriting the matrix as a

vector z:{z(k), k[1,N]} and then finding the median value zm for

the vector:

      
(/ 2 1),

1 , ,z , , (/ 2) (/ 2 1)
,

2

s

m s s

z N N is odd

z med z k z N z N z N
N iseven

   


      



zs is sorted version of z

2. Another way to calculate the median of a matrix is to calculate

the median value for columns and then for rows (or vice versa)

• These two approaches usually do not produce exactly the same

results

Filtering in the spatial domain

• Suppose (2N1+1)(2N2+1) window width

• z(i,j) - the central pixel in the filter window

• From all the pixels within the window we form a matrix:

Filtering in the spatial domain

1 2 2 1 2

1 1

1 2 2 1 2

(,) ... (,) ... (,)

(,) ... (,) ... (,)

(,) ... (,) ... (,)

z i N j N z i j N z i N j N

z i N j z i j z i N j

z i N j N z i j N z i N j N

     
 
  
 
      

1. Compare and sort the matrix elements in the appropriate

sequence and determine the median of each of these sequences

2. Repeat the previous procedure, except that instead of pixels

from the filter window, we use the median values already

obtained
 2 2 2(,), (, 1), , (,)nq med z i j N z i j N z i j N    

  11,;),(NiNinqmedjiq n 
output of separable

median filter

Filtering in the spatial domain

"Lena" affected by

impulse noise with

density 0.05

image filtered by

a median filter

with 3x3 window

image filtered by

a median filter

with 5x5

window

• α-trimmed mean filter - compromise between the median

and arithmetic mean filter

• After sorting the windowed pixels, a few lowest and highest

samples are discarded by using parameter , while the remaining

pixels are averaged

Filtering in the spatial domain

[]

[] 1

1(,) ()
(2[])

N N

s

n N

z i j z n
N N








 






- zs(n) is the vector of sorted pixels from the window N1xN2,

N=N1N2

- [.] denotes rounding to the greatest integer

- Parameter  takes the values from the range 0≤α<0.5

α-trimmed mean filter

α=0.5 corresponds to median, for odd N

α=0 it performs as the moving average filter

[] []1 2

1 1 2 2 [] 1 [] 11 2

1(,) (,)
(2[])(2[])

N N N N

n N m N

z i j z m n
N N N N

 


  

 

   


 

 

• the same operation can be performed separately on the rows and

columns:

Filtering in the frequency domain

• Filters in the frequency domain are designed on the basis of a

priori knowledge about signal frequency characteristics

• The most significant frequency content of images is usually

concentrated at low frequencies in many applications, the

images are usually filtered with low-pass filters

1 1 2 2
1 2

1
(,)

0

W and W
H

otherwise

 
 

  



11 1 12 21 2 22

1 2

1, ,
(,)

0,

W W W W
H

otherwise

 
 

    



2 2
1 2

1 2

1
(,)

0

W
H

otherwise

 
 

  



2 2
1 1 2 2 1 2

1 2

1, () ()
(,)

0,

W and W or W
H

otherwise

   
 

    



low-pass filter bandpass filter

high-pass filter circular low-pass filter

Edge detection

• Edges of the image should be obtained by simple differentiation

• The image is always more or less affected by noise

• One of the most commonly used algorithm for edge detection is based on

the Sobel matrix

• The image is analyzed pixel by pixel, using the Sobel matrix as a mask

• The matrix elements are the weights which multiply the pixels within the

mask

• The sum is calculated by adding all the obtained values and resulting value

is compared with a threshold

direct application of

differentiation is not effective

• The central pixel belongs to the edge if the sum is greater than

the threshold, the and vice versa

1 0 1
2 0 2
1 0 1

vS
 

  
  

Sobel matrix for

vertical edges

Sobel matrix for

horizontal edges 1 2 1
0 0 0
1 2 1

hS
 

 
    

Edge detection

1 1

1 1

(,) (,) (2, 2)
m n

L i j a i m j n S m n
 

     • The edges are obtained by

S(m,n) - filtering function (e.g., the Sobel matrix Sh and Sv)

• After calculating Lh and Lv (using the horizontal and vertical

matrix), the overall L is: 2 2
h vL L L 

• Obtained value is compared with a threshold and the results are

represented in a binary form

• Local threshold values are frequently used

They are calculated based on the mean response of edge detector

around the current pixel

• A threshold value can be calculated as:

1
(,) (,)(1) (,)

2 1

j Ni N

k i N l j N

p
T i j L i j p L k l

N



   


  


 

- p has a value

between 0 and 1

Edge detection

Illustration of

edge detection
original image Lv

Lh L

Data compression

• Multimedia information is very demanding

concerning the memory space

• Needs much processing power

• May require higher bit rates compared to the

available bit rates of the communication channels

• These aspects lead to the use of compression

algorithms

• Data compression - lossless compression and

lossy compression

JPEG image compression algorithm

• JPEG algorithm - significant compression ratio, high image quality JPEG

algorithm is analyzed across several blocks used for image compression -

block performing discrete cosine transform (DCT) on the 8x8

image blocks,

- quantization block,

- zig-zag matrix scanning block,

- entropy coding block.

DCT

8x8

Quantization

Entropy

coding

Compressed

data
Quantization

matrix

8
8

Coding

tablesMatrix

¯

Zig-Zag

¯

Sequence

7 7
1 2 1 2

1 2
0 0

() () (2 1) (2 1)
(,) (,)cos()cos()

2 2 16 16i j

C k C k i k j k
DCT k k a i j

 

 

 
  

JPEG image compression algorithm

1

1

1

2

2

2

1
0

() 2

1 0

1
0

() 2

1 0

for k
C k

for k

for k
C k

for k





 





 

DCT of an 8x8 image block

• The DCT coefficient (0,0) is DC component

• The DC component carries an information about the

mean value of 64 coefficients

• The remaining 63 coefficients are AC coefficients

• The samples of the grayscaled image whose values are in the

range are shifted to the range]12,0[n
- where n is

number of bits

used to represent

samples

1 1[2 ,2 1]n n  

• Then the DCT is applied

• For 8-bit samples case, the shifted range is [128,127]

• The corresponding DCT coefficients will be in the range:

[1024,1023] and they require additional 3 bits

JPEG image compression algorithm

The image

based on the

first 25x25

elements

Original image

"Lena"

The image

based on the

first 128x128

elements

The image

based on the

first 64x64

elements

JPEG image compression algorithm

• From previous slide follows that the most important

transform coefficients of images are concentrated at low

frequencies

1. Apply DCT and low-pass filtering

2. Take the first 128x128 coefficients, then the first 64x64

coefficients, and finally the first 25x25 elements

3. Apply the inverse DCT

- Reconstructed images are shown on previous slide

• Although the number of coefficients is significantly decreased,

the image retains much of the information

• 32x32 and 16x16 blocks slightly improve coding gain

compared to the 8x8 blocks, the JPEG compression still uses

8x8 blocks due to the quite easier calculation

JPEG image compression algorithm

• Image is first decomposed into 8x8 blocks. Next, the DCT is

calculated for each 8x8 block

• DCT coefficients are divided by weighting coefficients,

representing the elements of quantization matrix:

1 2
1 2

1 2

(,)
(,) { }

(,)
q

DCT k k
DCT k k round

Q k k


- Q - quantization matrix

- DCTq - quantized coefficients.

- calculating coefficients of the

quantization matrix

end

end

qualityjijiQ

Njfor

Nifor

];*)1[(1)1,1(

:0

:0







- quality parameter ranges from 1 to 25

- Higher values of quality - better

compression but worse image quality

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

compression matrix

for quality=2

• In practical applications, the quantization matrices are derived

from the experimental quantization matrix

• The experimental quantization matrix is defined for 50%

compression ratio (quality factor - QF = 50)

JPEG image compression algorithm

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
Coefficients of the quantization matrix Q50

• Matrices for other compression degrees 50()QFQ round Q q 

2 0.02 , 50

50
, 50

QF for QF

q
for QF

QF

 


 




• DCT coefficients of 8x8 blocks are divided by the corresponding

coefficients of quantization matrices and rounded to the nearest integer

values

JPEG image compression algorithm

• After quantization, the zig-zag reordering is applied to the 8x8 matrix

• Vector of 64 elements is formed

• The values are sorted from low-frequency coefficients to the high-

frequency coefficients

• The entropy coding is next applied based on the Huffman coding

0

2

3

9

10

20

21

35

1

4

8

11

19

22

34

36

5

7

12

18

23

33

37

48

6

13

17

24

32

38

47

14

16

25

31

39

46

50

57

15

26

30

40

45

51

56

58

27

29

41

44

52

55

59

62

28

42

43

53

54

60

61

6349

zig-zag

reorganization

• Each AC coefficient is encoded with two symbols:

(a,b)=(runlength,size)

• The runlength provides the information about the number of

consecutive zero coefficients preceding the non-zero AC

coefficient.

• The runlength is encoded with 4 bits, so it can be used to

represent 15 consecutive zero coefficients

• Symbol (15,0) represents 16 consecutive zero AC

coefficients and it can be up to three (15,0) extensions

• This symbol also contains information on the number of

bits required to represent the coefficient’s value (size)

• The second symbol is the amplitude of the coefficient

(which is in the range [-1023,1024])

• Second symbol can be represented with up to 10 bits

JPEG image compression algorithm

JPEG image compression algorithm

• Example:

- Sequence 0,0,0,0,0,0,0,239, is coded as (7,8) 239

- (0,0) symbol denotes the end of the block

• The differences between DC coefficients is coded instead of

their values (there is a strong correlation between the DC

coefficients from adjacent blocks)

[2048, 2047] - Range of the DC coefficients

• DC coefficient is coded by two symbols

- first symbol is the number

of bits (size) used to

represent the amplitude

- second symbol is the amplitude itself

Amplitude range Size

-1,1 1

-3,-2,2,3 2

-7,-6,-5,-4,4,5,6,7 3

-15,…,-8,8,…,15 4

-31,…,-16,16,…,31 5

-63,…,-32,32,…,63 6

-127,…,-64,64,…,127 7

-255,…,-128,128,…,255 8

-511,…,-256,256,…,511 9

-1023,…,-512,512,…,1023 10

• Amplitude for both DC and AC

coefficients are encoded by using the

variable-length integer code

IDCT

8x8

De-

quantization

Entropy

decoding

Compressed

data

Quantization

matrix

8
8

Coding

tables

Sequence

¯

Zig-Zag

¯

Matrix

JPEG image compression algorithm

• DECODING:

• The samples are returned into to the matrix form

• De-quantization followed by the inverse DCT is performed

1 2 1 2(,) (,)dq qDCT DCT k k Q k k 

• Inverse DCT transformation

1 2

7 7
1 2 1 2

1 2
0 0

() () (2 1) (2 1)
(,) (,)cos()cos()

2 2 16 16k k

C k C k i k j k
a i j DCT k k

 

 

 
  

• Duantization/de-quantization and rounding procedures introduce an

error

• The error is proportional to the quantization step

JPEG image compression algorithm
• Examples of compressed images with different qualities

original "Lena"

image

"Lena" after applying

JPEG compression

quality of 70%

"Lena" after

JPEG

compression

quality of

25%

"Lena" after JPEG

compression quality

5%

Examples

1. Calculate the memory requirements for an image of size

256x256 pixels, in the case of:

a) Binary image,

b) Grayscale image,

c) Color image.

Solution:

Binary image: 2562561= 65536 bits

Grayscale image: 2562568=524288 bits

Color image usually contains 3 different matrices for ach color

channel and required three time higher memory space than the

grayscale image:

25625683=1572864 bits

Examples

2. If the values of R, G, and B components in the RGB systems are

known and for a certain pixel they are given by R=0.5, G=0.2,

B=0.8, determine the corresponding values of the components

from the YUV color model.

)(713.0

)(564.0

114.0587.0299.0

YRV

YBU

BGRY







Y=0.2990.5+0.5870.2+0.1140.8= 0.358

U=0.564(0.8-0.358)=0.25

V=0.713(0.5-0.358)=0.1

Examples

3. Write a Matlab code which will load color image (e.g., lena.jpg),

determine the image size, and then converts the color image into

grayscaled version by using the Matlab built-in function rgb2gray, as

well as by using the following formula:
3

value value valueR G B
Grayscale

 


I=imread('lena.jpg'); % load image

size(I) % image size

ans =

512 512 3

I1=rgb2gray(I);

imshow(I1) % show image

I2=double(I);

I2=(I(:,:,1)+I(:,:,2)+I(:,:,3))/3;

imshow(uint8(I2));

Note: The color channels are obtained as: I(:,:,1), I(:,:,2), I(:,:,3)

Examples

4. Write a code in Matlab that will create a negative of image

“cameraman.tif ”.
I=imread('cameraman.tif');

I=double(I);

N=255-I;

imshow(uint8(N))

imshow(uint8(I))

Original Negative

Examples

5. Write a code in Matlab that will provide a simple image darkening

and brightening procedure by decreasing/increasing original pixels

values for 40%.

Solution:

I=imread('cameraman.tif');

I=double(I);

B=I+0.4*I; % brightening

figure(1), imshow(uint8(B))

D=I-0.4*I; % darkening

figure(2), imshow(uint8(D))

Examples

6. Starting from the grayscale image “cameraman.tif ”, make a

version of binary image by setting the threshold on value 128.

A binary image will have values 255 at the

positions (i,j) where the original image has

values above the threshold. On the remaining

positions the pixels in the binary image will be

0.

255, (,)
0, (,),(,)

I i j threshold
I i j otherwiseB i j




for i=1:m

for j=1:n

if I(i,j)>128

I(i,j)=255;

else

I(i,j)=0;

end

end

end

imshow(I)

I=imread(’cameraman.tif ’);

7. Consider a color image lena.jpg. Transform the image into

grayscaled one and add a white Gaussian noise with variance

0.02.

Solution:

I=imread(’lena.jpg’);

I=rgb2gray(I);

I=double(I);

I1=imnoise(I,'gaussian',0,0.02);

imshow(uint8(I1))

Examples

8. Calculate he mean and median values for vectors:

Examples

a) v1=[12 22 16 41 -3]; b) v2=[12 9 22 16 41 -3];

a) v1=[12 22 16 41 -3];

mean= 17.6

sorted_v1=[-3 12 16 22 41];

median=16.

b) v2=[12 9 22 16 41 -3]

mean=16.16

sorted_ v2=[-3 9 12 16 22 41]

median=(12+16)/2=14.

9. By using the Matlab function imnoise, add the impulse noise

(‘salt & pepper’ with a density 0.1) to the image “lena.jpg”. Then

perform the image filtering by using median filter realized by

Matlab function medfilt2 for two-dimensional median filter form.

Examples

I=imread('lena.jpg');

I=rgb2gray(I);

imshow(I)

% Noisy image ’salt & pepper’ (density 0.1)

In=imnoise(I,'salt & pepper',0.1);

imshow(In)

% Image filtering

If=medfilt2(In);

imshow(If)
Original image Noisy image Filtered image

10. Write your own code for median filtering in Matlab: the filtering

should be applied to image cameraman.tif which is corrupted by the

impulse noise with density 0.1. Use the window of size 3x3.

Examples

I=imread('cameraman.tif');

In=imnoise(I,'salt & pepper',0.1);

M= In;

[m,n]=size(In);

a=double(In);

for i=1:m

for j=1:n

b=a(max(i,i-1):min(m,i+1),max(j,j-1):min(n,j+1));

c=b(:);

M(i,j)=med(c);

end

end

figure(1),imshow(In)

figure(2),imshow(uint8(In))

11. Write a Matlab code that filter an image corrupted by Gaussian

noise with zero mean and variance equal to 0.01, where we use the

window of size 5x5. It is necessary to include the image boundaries

as well.

Examples

I=imread('cameraman.tif');

In =imnoise(I,'gaussian',0,0.1);

M= In;

[m,n]=size(In);

a=double(In);

for i=1:m

for j=1:n

b=a(max(i,i-2):min(m,i+2),max(j,j-2):min(n,j+2));

c=b(:);

M(i,j)=mean(c);

end

end

figure(1),imshow(In)

figure(2),imshow(uint8(In))

Examples

13. For a given block of 8x8 DCT coefficients and the given JPEG

quantization matrix Q, perform the quantization, zig-zag scanning and

determine the intermediate symbol sequence.

80 50 26 10 33 11 0 0

22 28 34 10 0 0 0 0

14 10 17 11 5 0 5 0

56 17 20 12 0 12 8 0

10 12 8 3 2 0 7 0

10 13 17 3 0 2 2 0

6 0 5 10 14 0 0 0

0 0 0 0 0 0 0 0

D

 
 


 
 
 
 
 
 
 
 
 
  

3 5 7 9 11 13 15 17

5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21

9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25

13 15 17 19 21 23 25 27

15 17 19 21 23 25 27 29

17 19 21 23 25 27 29 31

Q

 
 
 
 
 
 
 
 
 
 
 
  

Solution:

DCT coefficients from the 8x8 block are divided by the quantization

matrix and rounded to the integer values, as follows:
27 10 4 1 3 1 0 0

4 4 4 1 0 0 0 0

2 1 2 1 0 0 0 0

6 2 2 1 0 1 0 0
(/)

1 1 1 0 0 0 0 0

1 1 1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

qD round D Q

 
 


 
 
 
  
 
 
 
 
 
  

Examples
After performing the zig-zag scanning of the matrix Dq, the sequence is obtained in the form:

27, 10, 4, 2, -4, 4, 1, 4, 1, 6, 1, 2, 2, 1, 3, 1, 0, 1, 2, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, ...

Final the intermediate symbol sequence is given by:

(5)(27), (0,4)(10), (0,3)(4), (0,2),(2), (0,3)(-4), (0,3)(4), (0,1)(1), (0,3)(4), (0,1)(1), (0,3)(6),

(0,1)(1), (0,2)(2), (0,2)(2), (0,1)(1), (0,2)(3), (0,1)(1), (1,1)(1), (0,2)(2), (0,1)(1), (0,1)(1), (1,1)(1),

(0,1)(1), (0,1)(1), (8,1)(1), (6,1)(1), (9,1)(1), (0,0).

The code words for the symbols (a,b) are given in the table:

Code word

(0,1) 00

(0,2) 01

(0,3) 100

(0,4) 1011

(1,1) 1100

(6,1) 1111011

(8,1) 111111000

(9,1) 111111001

(0,0) EOB 1010

