University of Montenegro

Faculty of Electrical Engineering

SINGLE ITERATION ALGORITHM HARDWARE IMPLEMENTATION

Prof. dr Srdjan Stanković Prof. dr Nedjeljko Lekić Prof. dr Miloš Daković Prof. dr Irena Orović MScAndjela Draganić

Workshop Kotor, July 2015

ALGORITHM STEPS

var =
$$M \frac{N-M}{N-1} (A_1^2 + A_2^2 + ... + A_K^2)$$

$$T = \frac{1}{N} \left(-\operatorname{var}^2 \log(1 - \sqrt[N]{P}) \right)^{\frac{1}{2}}$$

$$V(f) = \sum_{m=1}^{M} v(m) e^{-j\frac{2\pi fm}{N}}, f = 1, ..., N$$

- Signal definition
 - Missing samples noise variance
 - N-signal length
 - *M*-number of available samples
 - *K*-number of signal components
 - Threshold

-Vector of initial DFT $v(m) \rightarrow$ Vector of available signal samples

 $pos = \arg\{|V| > T\}$

Finding the positions above the threshold

QR DECOMPOSITION METHODS

- There are several methods for QR decomposition calculation:
 - Gram-Schmidt decomposition;
 - Householder transformation and
 - Givens rotations

• QR based on Givens rotations can be parallelized and has a low computational complexity

$$A = QR,$$
$$R = Q^{T}A,$$
$$Q^{T}Q = I.$$

A-real or complex matrix; square or rectangular matrix
Q-an orthogonal matrix; R - right triangular matrix

QR DECOMPOSITION

• Givens rotation matrix: $G = \begin{bmatrix} c & s \\ -s & c \end{bmatrix}$

•
$$c^2$$
+ s^2 =1, c =cos(θ) i s =sin(θ)

 $\begin{bmatrix} c & s \\ -s & c \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \sqrt{a^2 + b^2} \\ 0 \end{bmatrix},$

 General form of Givens rotation matrix:

$$c = \frac{a}{\sqrt{a^2 + b^2}}, \qquad s = \frac{b}{\sqrt{a^2 + b^2}}$$
$$G(i, j, \theta) = \begin{bmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \cdots & \vdots & \cdots & \vdots \\ 0 & \cdots & C & \cdots & S & \cdots & 0 \\ \vdots & \cdots & \vdots & \ddots & \vdots & \cdots & \vdots \\ 0 & \cdots & -S & \cdots & C & \cdots & 0 \\ \vdots & \cdots & \vdots & \cdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix} j$$
$$i \qquad j$$

ALGORITHM STEPS

QR decomposition
$$\longrightarrow$$
 $A_{CS} = Q_{CS}R_{CS}$

$$X = (A_{CS}^* A_{CS})^{-1} (A_{CS}^* v) \longrightarrow X = \left((Q_{CS} R_{CS})^* (Q_{CS} R_{CS}) \right)^{-1} (A_{CS}^* v)$$

$$X = \left(R_{CS}^{*} Q_{CS}^{*} Q_{CS} R_{CS}\right)^{-1} (A_{CS}^{*} v) = (R_{CS}^{*} R_{CS}^{*})^{-1} (A_{CS}^{*} v)$$

$$\mathbf{X} = R_{CS}^{-1} (R_{CS}^{-1})^* \cdot A_{CS}^* v$$

BLOCK SCHEME

• *Part 1*: FFT calculation using the available signal samples and finding the positions of the FFT coefficients that are above the threshold;

• Part 2: Forming of the Compressive Sensing matrix;

• Part 3: QR decomposition and optimization problem solving;

• Part 4: Spectral positioning block

BLOCK SCHEME – PART 1

 $v_1, ..., v_M \implies$ Available signal samples *N*-signal length

M-number of available samples

BLOCK SCHEME – PART 3

BLOCK FOR SPECTRAL POSITIONING

BLOCK FOR THRESHOLD CALCULATION

QR DECOMPOSITION

A = QR,

CELL ARCHITECTURES FOR QR DECOMPOSITION AND MATRIX INVERSION:

THANK YOU