Faculty of Metalurgy and Technology / METALLURGY / CRYSTALLOGRAPHY
Course: | CRYSTALLOGRAPHY/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5518 | Obavezan | 1 | 5 | 3+1+0 |
Programs | METALLURGY |
Prerequisites | No prerequisites |
Aims | This course aims to introduce students to the basics of crystallography and lattice, studying a certain number of typical crystal structures, implementing methods of determining the structure of crystalline materials, applying these methods in metal science to determine the structure, measurement of particle size, and determination of crystal orientation. |
Learning outcomes | After successfully considering and learning the theory of X-ray diffraction, students will be introduced to the experimental methods of applying X-ray diffraction in determining the orientation of single crystal structure, the structure of polycrystalline aggregates, crystal structure, measuring lattice parameters, as well as determining residual stresses and solving many other essential case studies. Based on the presentation of computational and experimental methods of examining the structure of metal materials and their appropriate selection, as well as a comparative analysis of their applicability, they can recognize the possibility of implementing specific methods of structural analysis. Students acquired the knowledge necessary for fully defining the structure for quality control and designing materials with improved or particular properties. |
Lecturer / Teaching assistant | prof. dr Nada Jauković |
Methodology | Lectures, exercises, homework assignments, consultation. |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | Introduction to the geometry of crystals. Lattices. Crystal systems. Indices of planes and directions. Scalar product. |
I week exercises | Crystallography I (examples and assignments). |
II week lectures | Typical crystal structures. Solid solutions. Interstitial and substitutional solid solutions. Ordered structures. Examples of typical structures. |
II week exercises | Crystallography II (examples and assignments). |
III week lectures | Elements of symmetry of the crystal. Space and point groups. Relation of macroscopic and microscopic aspects of symmetry with physical and mechanical properties. |
III week exercises | Density and the atomic packaging factor of a face-centred cubic lattice, primitive cubic lattice and close-packed hexagonal lattices. |
IV week lectures | Reciprocal lattice. The application of vectors, vector product, triple scalar product, nomenclature, and real and reciprocal space. |
IV week exercises | Crystallography III. The crystallography of slip. |
V week lectures | Using a reciprocal lattice. Directions, planes, zones. Reciprocal lattices of heterophase systems. Crystallographic interdependence of heterophase structures. |
V week exercises | Midterm exam 1. |
VI week lectures | Diffraction methods. X-ray diffraction and electron diffraction. Application in crystallography. |
VI week exercises | Make-up midterm exam 1. |
VII week lectures | Ewald sphere. Determination of unknown crystal structure. Quantitative analysis of multiphase systems. |
VII week exercises | Absorption of X-rays. Indexing of radiographs. Examples and assignments. |
VIII week lectures | Transmission electron microscopy (TEM). Microdiffraction. Kinematic and dynamic theory of diffraction. |
VIII week exercises | Qualitative and quantitative X-ray structural analysis. Examples and assignments. |
IX week lectures | Spherical projection. Introduction to stereographic projection. Elements of stereographic projection. |
IX week exercises | Stereographic projection I (examples and assignments). |
X week lectures | Standard stereographic projections of typical crystal structures. |
X week exercises | Stereographic projection II (examples and assignments). |
XI week lectures | Textures. Methods of direct determination of textures. Inverse pole figures. Stereographic projection. |
XI week exercises | Midterm exam 2. |
XII week lectures | Defects in crystals. Comparison of defect energies in metals. |
XII week exercises | Examples and assignments. |
XIII week lectures | Dislocations. Point defect-dislocation interactions. Surface boundaries. Models. |
XIII week exercises | Examples and assignments. |
XIV week lectures | Preparation for final exam. |
XIV week exercises | Make-up midterm exam 2. Submission of homework. |
XV week lectures | Preparation for final exam. |
XV week exercises | Solving the selected problems. |
Student workload | Per week: 5 credits x 40/30 hours = 6 hours and 40 minutes Total workload for the course: 5 x 30 = 150 hours |
Per week | Per semester |
5 credits x 40/30=6 hours and 40 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 1 excercises 2 hour(s) i 40 minuts of independent work, including consultations |
Classes and final exam:
6 hour(s) i 40 minuts x 16 =106 hour(s) i 40 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 6 hour(s) i 40 minuts x 2 =13 hour(s) i 20 minuts Total workload for the subject: 5 x 30=150 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 30 hour(s) i 0 minuts Workload structure: 106 hour(s) i 40 minuts (cources), 13 hour(s) i 20 minuts (preparation), 30 hour(s) i 0 minuts (additional work) |
Student obligations | Students are required to attend classes, do their homework and take the midterm exams. |
Consultations | Tuesday and Thursday, 10:00 - 12:00. |
Literature | V.R. Radmilović, N.V. Jauković, Lectures. B.D. Callity, S. R. Stock, Elements of X-ray diffractions, Pearson, 2001. W.D. Callister, Fundamentals of materials science and engineering: An Integrated Approach, Wiley, 2018. |
Examination methods | Homework- total 10 (1 point per homework, total 10 points); Two midterm exams (20 points each, total 40 points); Final exam (50 points); Passing grade is obtained if at least 50 points are collected. |
Special remarks | - |
Comment | - |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / METALLURGY OF SECONDARY RAW MATERIALS
Course: | METALLURGY OF SECONDARY RAW MATERIALS/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5520 | Obavezan | 1 | 5 | 3+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
5 credits x 40/30=6 hours and 40 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 1 hour(s) i 40 minuts of independent work, including consultations |
Classes and final exam:
6 hour(s) i 40 minuts x 16 =106 hour(s) i 40 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 6 hour(s) i 40 minuts x 2 =13 hour(s) i 20 minuts Total workload for the subject: 5 x 30=150 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 30 hour(s) i 0 minuts Workload structure: 106 hour(s) i 40 minuts (cources), 13 hour(s) i 20 minuts (preparation), 30 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / POWDER METALLURGY
Course: | POWDER METALLURGY/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5516 | Obavezan | 1 | 6 | 3+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
6 credits x 40/30=8 hours and 0 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 3 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
8 hour(s) i 0 minuts x 16 =128 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 8 hour(s) i 0 minuts x 2 =16 hour(s) i 0 minuts Total workload for the subject: 6 x 30=180 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 36 hour(s) i 0 minuts Workload structure: 128 hour(s) i 0 minuts (cources), 16 hour(s) i 0 minuts (preparation), 36 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / WELDING AND JOINING
Course: | WELDING AND JOINING/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5517 | Obavezan | 1 | 6 | 3+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
6 credits x 40/30=8 hours and 0 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 3 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
8 hour(s) i 0 minuts x 16 =128 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 8 hour(s) i 0 minuts x 2 =16 hour(s) i 0 minuts Total workload for the subject: 6 x 30=180 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 36 hour(s) i 0 minuts Workload structure: 128 hour(s) i 0 minuts (cources), 16 hour(s) i 0 minuts (preparation), 36 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / CHARACTERIZATION OF MATERIALS
Course: | CHARACTERIZATION OF MATERIALS/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5519 | Obavezan | 1 | 6 | 3+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
6 credits x 40/30=8 hours and 0 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 3 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
8 hour(s) i 0 minuts x 16 =128 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 8 hour(s) i 0 minuts x 2 =16 hour(s) i 0 minuts Total workload for the subject: 6 x 30=180 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 36 hour(s) i 0 minuts Workload structure: 128 hour(s) i 0 minuts (cources), 16 hour(s) i 0 minuts (preparation), 36 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / EXTRACTIVE METALLURGY OF ALUMINUM
Course: | EXTRACTIVE METALLURGY OF ALUMINUM/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5523 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / CASTING OF ALUMINUM
Course: | CASTING OF ALUMINUM/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5524 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / DEFORMATION PROCESSING OF ALUMINUM
Course: | DEFORMATION PROCESSING OF ALUMINUM/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5525 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / CASTING OF STEEL
Course: | CASTING OF STEEL/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5527 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / DEFORMATION PROCESSING OF STEEL
Course: | DEFORMATION PROCESSING OF STEEL/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5528 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / SURFACE ENGINEERING
Course: | SURFACE ENGINEERING/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5529 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / MODELLING OF HEAT PROCESSES
Course: | MODELLING OF HEAT PROCESSES/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5531 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | No prerequisites required. |
Aims | Special emphasis is placed on process modeling methods of heating and cooling of metals. |
Learning outcomes | |
Lecturer / Teaching assistant | Dr Nebojša Tadić |
Methodology | Lectures, exercises, consultations, homework, tests, final exams. |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | Methods of thermal processes studying. Method classification and basic characteristics. |
I week exercises | |
II week lectures | Temperature and heat changes in metallurgical processes. Modeling and model types. |
II week exercises | |
III week lectures | Stationary and non-stationary heat processes. The heat exchange. |
III week exercises | |
IV week lectures | Mathematical formulation. Application to the convection, conduction and radiation. |
IV week exercises | |
V week lectures | Nonlinear conditions unsteady conduction and convection. Boundary conditions. |
V week exercises | |
VI week lectures | First test |
VI week exercises | |
VII week lectures | Modeling of heat flow in the phase change (melting and solidification). |
VII week exercises | |
VIII week lectures | Thermal change in the ingot casting and continuous casting of steel and aluminum. |
VIII week exercises | |
IX week lectures | Modeling of complex thermal processes. Heat transfer and flow. |
IX week exercises | |
X week lectures | Laminar and turbulent boundary layer. Convection in the melting and solidification. |
X week exercises | |
XI week lectures | Modelling of heating and cooling of metals. |
XI week exercises | |
XII week lectures | One-dimensional and multidimensional models.Taylor's expansion. Euler's method. |
XII week exercises | |
XIII week lectures | Numerical solution of differential equations: Finite Difference and Finite Element method. |
XIII week exercises | |
XIV week lectures | Examples of modeling. |
XIV week exercises | |
XV week lectures | Final exam. |
XV week exercises | Final exam. |
Student workload | Weekly: 3 ECTS x 40/30 h = 4 h. Per semester: 3 x 30 = 90 h. |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | Attendance of lectures, two seminar works. |
Consultations | Every workday: 13-14 h. |
Literature | 1. J.P.Holman, Heat Transfer, McGraw Hill College, 2002. 2. R.W. Lewis, K.Morgan, K. N. Seetharamu, The Finite Element Method in Heat Transfer Analyisis, John Wiley & Sons, 1996. 3. L. Lazić, Numeričke metode u toplinskoj analizi, Sveučilište u Zagrebu |
Examination methods | - Active participation in teaching (including seminar work) - 10 points. - Two tests (2 x 20 = 40 points) - Final exam – 50 points - The passing grade is obtained if student gets at least 50 points. |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / SECONDARY METALLURGY OF STEEL
Course: | SECONDARY METALLURGY OF STEEL/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
8340 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / NAUKA O METALIMA
Course: | NAUKA O METALIMA/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
11524 | Obavezan | 2 | 3 | 2+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
3 credits x 40/30=4 hours and 0 minuts
2 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 0 minuts of independent work, including consultations |
Classes and final exam:
4 hour(s) i 0 minuts x 16 =64 hour(s) i 0 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 4 hour(s) i 0 minuts x 2 =8 hour(s) i 0 minuts Total workload for the subject: 3 x 30=90 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 18 hour(s) i 0 minuts Workload structure: 64 hour(s) i 0 minuts (cources), 8 hour(s) i 0 minuts (preparation), 18 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / SELECTION OF METALS AND ALLOYS
Course: | SELECTION OF METALS AND ALLOYS/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5532 | Obavezan | 2 | 4 | 3+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
4 credits x 40/30=5 hours and 20 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 20 minuts of independent work, including consultations |
Classes and final exam:
5 hour(s) i 20 minuts x 16 =85 hour(s) i 20 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 5 hour(s) i 20 minuts x 2 =10 hour(s) i 40 minuts Total workload for the subject: 4 x 30=120 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 24 hour(s) i 0 minuts Workload structure: 85 hour(s) i 20 minuts (cources), 10 hour(s) i 40 minuts (preparation), 24 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |
Faculty of Metalurgy and Technology / METALLURGY / TRANSPORT PHENOMENA
Course: | TRANSPORT PHENOMENA/ |
Course ID | Course status | Semester | ECTS credits | Lessons (Lessons+Exercises+Laboratory) |
5541 | Obavezan | 2 | 4 | 3+2+0 |
Programs | METALLURGY |
Prerequisites | |
Aims | |
Learning outcomes | |
Lecturer / Teaching assistant | |
Methodology |
Plan and program of work | |
Preparing week | Preparation and registration of the semester |
I week lectures | |
I week exercises | |
II week lectures | |
II week exercises | |
III week lectures | |
III week exercises | |
IV week lectures | |
IV week exercises | |
V week lectures | |
V week exercises | |
VI week lectures | |
VI week exercises | |
VII week lectures | |
VII week exercises | |
VIII week lectures | |
VIII week exercises | |
IX week lectures | |
IX week exercises | |
X week lectures | |
X week exercises | |
XI week lectures | |
XI week exercises | |
XII week lectures | |
XII week exercises | |
XIII week lectures | |
XIII week exercises | |
XIV week lectures | |
XIV week exercises | |
XV week lectures | |
XV week exercises |
Student workload | |
Per week | Per semester |
4 credits x 40/30=5 hours and 20 minuts
3 sat(a) theoretical classes 0 sat(a) practical classes 2 excercises 0 hour(s) i 20 minuts of independent work, including consultations |
Classes and final exam:
5 hour(s) i 20 minuts x 16 =85 hour(s) i 20 minuts Necessary preparation before the beginning of the semester (administration, registration, certification): 5 hour(s) i 20 minuts x 2 =10 hour(s) i 40 minuts Total workload for the subject: 4 x 30=120 hour(s) Additional work for exam preparation in the preparing exam period, including taking the remedial exam from 0 to 30 hours (remaining time from the first two items to the total load for the item) 24 hour(s) i 0 minuts Workload structure: 85 hour(s) i 20 minuts (cources), 10 hour(s) i 40 minuts (preparation), 24 hour(s) i 0 minuts (additional work) |
Student obligations | |
Consultations | |
Literature | |
Examination methods | |
Special remarks | |
Comment |
Grade: | F | E | D | C | B | A |
Number of points | less than 50 points | greater than or equal to 50 points and less than 60 points | greater than or equal to 60 points and less than 70 points | greater than or equal to 70 points and less than 80 points | greater than or equal to 80 points and less than 90 points | greater than or equal to 90 points |